Cargando…
Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients
Glioblastoma is an aggressive brain tumor with a low survival rate. Understanding tumor behavior by predicting prognosis outcomes is a crucial factor in deciding a proper treatment plan. In this paper, an automatic overall survival time prediction system (OST) for glioblastoma patients is developed...
Autores principales: | Chato, Lina, Latifi, Shahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705288/ https://www.ncbi.nlm.nih.gov/pubmed/34945808 http://dx.doi.org/10.3390/jpm11121336 |
Ejemplares similares
-
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
por: Baid, Ujjwal, et al.
Publicado: (2020) -
Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis
por: Sun, Wenzheng, et al.
Publicado: (2018) -
Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction
por: Shboul, Zeina A., et al.
Publicado: (2019) -
Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique
por: Karami, Golestan, et al.
Publicado: (2021) -
Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab
por: Ammari, Samy, et al.
Publicado: (2021)