Cargando…
Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing
Much information can be derived from operational deflection shapes of vibrating structures and the magnification of their motion. However, the acquisition of deflection shapes usually requires a manual definition of an object’s points of interest, while general motion magnification is computationall...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705351/ https://www.ncbi.nlm.nih.gov/pubmed/34960444 http://dx.doi.org/10.3390/s21248351 |
_version_ | 1784621924653989888 |
---|---|
author | Machynia, Adam Dworakowski, Ziemowit Dziedziech, Kajetan Zdziebko, Paweł Konieczny, Jarosław Holak, Krzysztof |
author_facet | Machynia, Adam Dworakowski, Ziemowit Dziedziech, Kajetan Zdziebko, Paweł Konieczny, Jarosław Holak, Krzysztof |
author_sort | Machynia, Adam |
collection | PubMed |
description | Much information can be derived from operational deflection shapes of vibrating structures and the magnification of their motion. However, the acquisition of deflection shapes usually requires a manual definition of an object’s points of interest, while general motion magnification is computationally inefficient. We propose easy extraction of operational deflection shapes straight from vision data by analyzing and processing optical flow information from the video and then, based on these graphs, morphing source data to magnify the shape of deflection. We introduce several processing routines for automatic masking of the optical flow data and frame-wise information fusion. The method is tested based on data acquired both in numerical simulations and real-life experiments in which cantilever beams were subjected to excitation around their natural frequencies. |
format | Online Article Text |
id | pubmed-8705351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87053512021-12-25 Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing Machynia, Adam Dworakowski, Ziemowit Dziedziech, Kajetan Zdziebko, Paweł Konieczny, Jarosław Holak, Krzysztof Sensors (Basel) Article Much information can be derived from operational deflection shapes of vibrating structures and the magnification of their motion. However, the acquisition of deflection shapes usually requires a manual definition of an object’s points of interest, while general motion magnification is computationally inefficient. We propose easy extraction of operational deflection shapes straight from vision data by analyzing and processing optical flow information from the video and then, based on these graphs, morphing source data to magnify the shape of deflection. We introduce several processing routines for automatic masking of the optical flow data and frame-wise information fusion. The method is tested based on data acquired both in numerical simulations and real-life experiments in which cantilever beams were subjected to excitation around their natural frequencies. MDPI 2021-12-14 /pmc/articles/PMC8705351/ /pubmed/34960444 http://dx.doi.org/10.3390/s21248351 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Machynia, Adam Dworakowski, Ziemowit Dziedziech, Kajetan Zdziebko, Paweł Konieczny, Jarosław Holak, Krzysztof Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title | Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title_full | Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title_fullStr | Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title_full_unstemmed | Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title_short | Operational Deflection Shapes Magnification and Visualization Using Optical-Flow-Based Image Processing |
title_sort | operational deflection shapes magnification and visualization using optical-flow-based image processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705351/ https://www.ncbi.nlm.nih.gov/pubmed/34960444 http://dx.doi.org/10.3390/s21248351 |
work_keys_str_mv | AT machyniaadam operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing AT dworakowskiziemowit operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing AT dziedziechkajetan operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing AT zdziebkopaweł operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing AT koniecznyjarosław operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing AT holakkrzysztof operationaldeflectionshapesmagnificationandvisualizationusingopticalflowbasedimageprocessing |