Cargando…
High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers
The popularity of using the photopolymerization reactions in various areas of science and technique is constantly gaining importance. Light-induced photopolymerization is the basic process for the production of various polymeric materials. The key role in the polymerization reaction is the photoinit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705399/ https://www.ncbi.nlm.nih.gov/pubmed/34947409 http://dx.doi.org/10.3390/ma14247814 |
_version_ | 1784621936671719424 |
---|---|
author | Balcerak, Alicja Kabatc, Janina Czech, Zbigniew Nowak, Małgorzata Mozelewska, Karolina |
author_facet | Balcerak, Alicja Kabatc, Janina Czech, Zbigniew Nowak, Małgorzata Mozelewska, Karolina |
author_sort | Balcerak, Alicja |
collection | PubMed |
description | The popularity of using the photopolymerization reactions in various areas of science and technique is constantly gaining importance. Light-induced photopolymerization is the basic process for the production of various polymeric materials. The key role in the polymerization reaction is the photoinitiator. The huge demand for radical and cationic initiators results from the dynamic development of the medical sector, and the optoelectronic, paints, coatings, varnishes and adhesives industries. For this reason, we dealt with the subject of designing new, highly-efficient radical photoinitiators. This paper describes novel photoinitiating systems operating in UV-Vis light for radical polymerization of acrylates. The proposed photoinitiators are composed of squaraine (SQ) as a light absorber and various diphenyliodonium (Iod) salts as co-initiators. The kinetic parameters of radical polymerization of trimethylolpropane triacrylate (TMPTA), such as the degree of double bonds conversion (C(%)), the rate of photopolymerization (R(p)), as well as the photoinitiation index (I(p)) were calculated. It was found that 2-aminobenzothiazole derivatives in the presence of iodonium salts effectively initiated the polymerization of TMPTA. The rates of polymerization were at about 2 × 10(−2) s(−1) and the degree of conversion of acrylate groups from 10% to 36% were observed. The values of the photoinitiating indexes for the most optimal initiator concentration, i.e., 5 × 10(−3) M were in the range from 1 × 10(−3) s(−2) even to above 9 × 10(−3) s(−2). The photoinitiating efficiency of new radical initiators depends on the concentration and chemical structure of used photoinitiator. The role of squaraine-based photoinitiating systems as effective dyeing photoinitiators for radical polymerization is highlighted in this article. |
format | Online Article Text |
id | pubmed-8705399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87053992021-12-25 High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers Balcerak, Alicja Kabatc, Janina Czech, Zbigniew Nowak, Małgorzata Mozelewska, Karolina Materials (Basel) Article The popularity of using the photopolymerization reactions in various areas of science and technique is constantly gaining importance. Light-induced photopolymerization is the basic process for the production of various polymeric materials. The key role in the polymerization reaction is the photoinitiator. The huge demand for radical and cationic initiators results from the dynamic development of the medical sector, and the optoelectronic, paints, coatings, varnishes and adhesives industries. For this reason, we dealt with the subject of designing new, highly-efficient radical photoinitiators. This paper describes novel photoinitiating systems operating in UV-Vis light for radical polymerization of acrylates. The proposed photoinitiators are composed of squaraine (SQ) as a light absorber and various diphenyliodonium (Iod) salts as co-initiators. The kinetic parameters of radical polymerization of trimethylolpropane triacrylate (TMPTA), such as the degree of double bonds conversion (C(%)), the rate of photopolymerization (R(p)), as well as the photoinitiation index (I(p)) were calculated. It was found that 2-aminobenzothiazole derivatives in the presence of iodonium salts effectively initiated the polymerization of TMPTA. The rates of polymerization were at about 2 × 10(−2) s(−1) and the degree of conversion of acrylate groups from 10% to 36% were observed. The values of the photoinitiating indexes for the most optimal initiator concentration, i.e., 5 × 10(−3) M were in the range from 1 × 10(−3) s(−2) even to above 9 × 10(−3) s(−2). The photoinitiating efficiency of new radical initiators depends on the concentration and chemical structure of used photoinitiator. The role of squaraine-based photoinitiating systems as effective dyeing photoinitiators for radical polymerization is highlighted in this article. MDPI 2021-12-17 /pmc/articles/PMC8705399/ /pubmed/34947409 http://dx.doi.org/10.3390/ma14247814 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Balcerak, Alicja Kabatc, Janina Czech, Zbigniew Nowak, Małgorzata Mozelewska, Karolina High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title | High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title_full | High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title_fullStr | High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title_full_unstemmed | High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title_short | High-Performance UV-Vis Light Induces Radical Photopolymerization Using Novel 2-Aminobenzothiazole-Based Photosensitizers |
title_sort | high-performance uv-vis light induces radical photopolymerization using novel 2-aminobenzothiazole-based photosensitizers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705399/ https://www.ncbi.nlm.nih.gov/pubmed/34947409 http://dx.doi.org/10.3390/ma14247814 |
work_keys_str_mv | AT balcerakalicja highperformanceuvvislightinducesradicalphotopolymerizationusingnovel2aminobenzothiazolebasedphotosensitizers AT kabatcjanina highperformanceuvvislightinducesradicalphotopolymerizationusingnovel2aminobenzothiazolebasedphotosensitizers AT czechzbigniew highperformanceuvvislightinducesradicalphotopolymerizationusingnovel2aminobenzothiazolebasedphotosensitizers AT nowakmałgorzata highperformanceuvvislightinducesradicalphotopolymerizationusingnovel2aminobenzothiazolebasedphotosensitizers AT mozelewskakarolina highperformanceuvvislightinducesradicalphotopolymerizationusingnovel2aminobenzothiazolebasedphotosensitizers |