Cargando…
A Prognostics Method Based on Back Propagation Neural Network for Corroded Pipelines
A method that employs the back propagation (BP) neural network is used to predict the growth of corrosion defect in pipelines. This method considers more diversified parameters that affect the pipeline’s corrosion rate, including pipe parameters, service life, corrosion type, corrosion location, cor...
Autores principales: | Xie, Mingjiang, Li, Zishuo, Zhao, Jianli, Pei, Xianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705578/ https://www.ncbi.nlm.nih.gov/pubmed/34945417 http://dx.doi.org/10.3390/mi12121568 |
Ejemplares similares
-
A Crack Propagation Method for Pipelines with Interacting Corrosion and Crack Defects
por: Xie, Mingjiang, et al.
Publicado: (2022) -
A Review of Finite Element Analysis and Artificial Neural Networks as Failure Pressure Prediction Tools for Corroded Pipelines
por: Vijaya Kumar, Suria Devi, et al.
Publicado: (2021) -
Collapse of Corroded Pipelines under Combined Tension and External Pressure
por: Ye, Hao, et al.
Publicado: (2016) -
Neural network construction via back-propagation
por: Burwick, T T
Publicado: (1994) -
A method of forecasting trade export volume based on back-propagation neural network
por: Dai, Chenglin
Publicado: (2022)