Cargando…
Sound Event Detection by Pseudo-Labeling in Weakly Labeled Dataset
Weakly labeled sound event detection (WSED) is an important task as it can facilitate the data collection efforts before constructing a strongly labeled sound event dataset. Recent high performance in deep learning-based WSED’s exploited using a segmentation mask for detecting the target feature map...
Autores principales: | Park, Chungho, Kim, Donghyeon, Ko, Hanseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705589/ https://www.ncbi.nlm.nih.gov/pubmed/34960475 http://dx.doi.org/10.3390/s21248375 |
Ejemplares similares
-
SELID: Selective Event Labeling for Intrusion Detection Datasets
por: Jang, Woohyuk, et al.
Publicado: (2023) -
PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation
por: Huang, Yu, et al.
Publicado: (2023) -
Dataset for polyphonic sound event detection tasks in urban soundscapes: The synthetic polyphonic ambient sound source (SPASS) dataset
por: Viveros-Muñoz, Rhoddy, et al.
Publicado: (2023) -
Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events
por: Zhang, Hong-Bo, et al.
Publicado: (2022) -
Polyp segmentation with consistency training and continuous update of pseudo-label
por: Park, Hyun-Cheol, et al.
Publicado: (2022)