Cargando…

Architecture Exploration of a Backprojection Algorithm for Real-Time Video SAR

This paper explores novel architectures for fast backprojection based video synthetic aperture radar (BP-VISAR) with multiple GPUs. The video SAR frame rate is analyzed for non-overlapped and overlapped aperture modes. For the parallelization of the backprojection process, a processing data unit is...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seokwon, Ban, Inmo, Lee, Myeongjin, Jung, Yunho, Lee, Wookyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705597/
https://www.ncbi.nlm.nih.gov/pubmed/34960350
http://dx.doi.org/10.3390/s21248258
Descripción
Sumario:This paper explores novel architectures for fast backprojection based video synthetic aperture radar (BP-VISAR) with multiple GPUs. The video SAR frame rate is analyzed for non-overlapped and overlapped aperture modes. For the parallelization of the backprojection process, a processing data unit is defined as the phase history data or range profile data from partial synthetic-apertures divided from the full resolution target data. Considering whether full-aperture processing is performed and range compression or backprojection are parallelized on a GPU basis, we propose six distinct architectures, each having a single-stream pipeline with a single GPU. The performance of these architectures is evaluated in both non-overlapped and overlapped modes. The efficiency of the BP-VISAR architecture with sub-aperture processing in the overlapped mode is accelerated further by filling the processing gap from the idling GPU resources with multi-stream based backprojection on multiple GPUs. The frame rate of the proposed BP-VISAR architecture with sub-aperture processing is scalable with the number of GPU devices for large pixel resolution. It can generate 4096 × 4096 video SAR frames of 0.5 m cross-range resolution in 23.0 Hz on a single GPU and 73.5 Hz on quad GPUs.