Cargando…
Surface Transport Properties of Pb-Intercalated Graphene
Intercalation experiments on epitaxial graphene are attracting a lot of attention at present as a tool to further boost the electronic properties of 2D graphene. In this work, we studied the intercalation of Pb using buffer layers on 6H-SiC(0001) by means of electron diffraction, scanning tunneling...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705698/ https://www.ncbi.nlm.nih.gov/pubmed/34947298 http://dx.doi.org/10.3390/ma14247706 |
Sumario: | Intercalation experiments on epitaxial graphene are attracting a lot of attention at present as a tool to further boost the electronic properties of 2D graphene. In this work, we studied the intercalation of Pb using buffer layers on 6H-SiC(0001) by means of electron diffraction, scanning tunneling microscopy, photoelectron spectroscopy and in situ surface transport. Large-area intercalation of a few Pb monolayers succeeded via surface defects. The intercalated Pb forms a characteristic striped phase and leads to formation of almost charge neutral graphene in proximity to a Pb layer. The Pb intercalated layer consists of 2 ML and shows a strong structural corrugation. The epitaxial heterostructure provides an extremely high conductivity of [Formula: see text] mS/□. However, at low temperatures (70 K), we found a metal-insulator transition that we assign to the formation of minigaps in epitaxial graphene, possibly induced by a static distortion of graphene following the corrugation of the interface layer. |
---|