Cargando…
WildGait: Learning Gait Representations from Raw Surveillance Streams
SIMPLE SUMMARY: In this work, we explore self-supervised pretraining for gait recognition. We gather the largest dataset to date of real-world gait sequences automatically annotated through pose tracking (UWG), which offers realistic confounding factors as opposed to current datasets. Results highli...
Autores principales: | Cosma, Adrian, Radoi, Ion Emilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705742/ https://www.ncbi.nlm.nih.gov/pubmed/34960479 http://dx.doi.org/10.3390/s21248387 |
Ejemplares similares
-
Learning Gait Representations with Noisy Multi-Task Learning
por: Cosma, Adrian, et al.
Publicado: (2022) -
Exploring Self-Supervised Vision Transformers for Gait Recognition in the Wild
por: Cosma, Adrian, et al.
Publicado: (2023) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Saleem, Faizan, et al.
Publicado: (2021) -
Analysis of foot and ankle disorders and prediction of gait in multiple sclerosis rehabilitation
por: Rusu, Ligia, et al.
Publicado: (2014) -
The mental representation of the human gait in young and older adults
por: Stöckel, Tino, et al.
Publicado: (2015)