Cargando…
CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method
With the rapid increase in encrypted traffic in the network environment and the increasing proportion of encrypted traffic, the study of encrypted traffic classification has become increasingly important as a part of traffic analysis. At present, in a closed environment, the classification of encryp...
Autores principales: | Hu, Xinyi, Gu, Chunxiang, Chen, Yihang, Wei, Fushan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705865/ https://www.ncbi.nlm.nih.gov/pubmed/34960324 http://dx.doi.org/10.3390/s21248231 |
Ejemplares similares
-
Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
por: Pathmaperuma, Madushi H., et al.
Publicado: (2022) -
Deep Encrypted Traffic Detection: An Anomaly Detection Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction
por: Long, Gang, et al.
Publicado: (2023) -
Generalized multi-channel scheme for secure image encryption
por: Audhkhasi, Romil, et al.
Publicado: (2021) -
Training of Classification Models via Federated Learning and Homomorphic Encryption
por: Angulo, Eduardo, et al.
Publicado: (2023) -
EStore: A User-Friendly Encrypted Storage Scheme for Distributed File Systems
por: Chen, Yuxiang, et al.
Publicado: (2023)