Cargando…
Experimental Investigation on the Effect of Converter Slag Aggregate for Blended Mortar Based on CT Scanning
This study investigated the air aging converter (Basic Oxygen Furnace, BOF) slag aggregate mortar with pulverized fly ash (PFA) and ferronickel slag (FNS). The chemical composition and mineralogical constituents of BOF incorporated mortar were analyzed. Setting time, flowability, compressive strengt...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705875/ https://www.ncbi.nlm.nih.gov/pubmed/34947168 http://dx.doi.org/10.3390/ma14247570 |
Sumario: | This study investigated the air aging converter (Basic Oxygen Furnace, BOF) slag aggregate mortar with pulverized fly ash (PFA) and ferronickel slag (FNS). The chemical composition and mineralogical constituents of BOF incorporated mortar were analyzed. Setting time, flowability, compressive strength, and length change were measured to evaluate the fundamental properties of BOF mortar. The X-ray CT analysis was employed to observe the effect of converter slag in the cement matrix visually. The results showed that the hydration of BOF generated a pore at the vicinity of the aggregate, which decreased the compressive strength and increased the length change of mortar. However, the PFA or FNS incorporation of PFA or FNS can decrease the alkalinity of pore solution and subsequently reduce the reactivity of BOF aggregate. Thus, the incorporation of PFA and FNS can be a way to eliminate the disadvantage of BOF, such as volume expansion. |
---|