Cargando…
Accuracy Analysis of Feature-Based Automatic Modulation Classification via Deep Neural Network
A feature-based automatic modulation classification (FB-AMC) algorithm has been widely investigated because of its better performance and lower complexity. In this study, a deep learning model was designed to analyze the classification performance of FB-AMC among the most commonly used features, inc...
Autores principales: | Ge, Zhan, Jiang, Hongyu, Guo, Youwei, Zhou, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706053/ https://www.ncbi.nlm.nih.gov/pubmed/34960346 http://dx.doi.org/10.3390/s21248252 |
Ejemplares similares
-
Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
por: Zang, Ke, et al.
Publicado: (2021) -
Automatic Classification Framework of Tongue Feature Based on Convolutional Neural Networks
por: Li, Jiawei, et al.
Publicado: (2022) -
Automatic and Accurate Sleep Stage Classification via a Convolutional Deep Neural Network and Nanomembrane Electrodes
por: Kwon, Kangkyu, et al.
Publicado: (2022) -
Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
por: Wang, Dong, et al.
Publicado: (2023) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Takiyama, Hirotoshi, et al.
Publicado: (2018)