Cargando…

Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers

The monotonic and cyclic properties of carbon fiber-reinforced epoxy (CFEP) laminate specimens with matrices modified by multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were experimentally studied. The laminate specimens were fabricated by the hand lay-up procedure and six MW...

Descripción completa

Detalles Bibliográficos
Autores principales: Jen, Yi-Ming, Huang, Yu-Ching
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706123/
https://www.ncbi.nlm.nih.gov/pubmed/34947805
http://dx.doi.org/10.3390/nano11123459
_version_ 1784622116096704512
author Jen, Yi-Ming
Huang, Yu-Ching
author_facet Jen, Yi-Ming
Huang, Yu-Ching
author_sort Jen, Yi-Ming
collection PubMed
description The monotonic and cyclic properties of carbon fiber-reinforced epoxy (CFEP) laminate specimens with matrices modified by multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were experimentally studied. The laminate specimens were fabricated by the hand lay-up procedure and six MWCNT:GNP weight ratios, i.e., 0:0, 10:0, 0:10, 5:5, 9:1, and 1:9, were considered to prepare the nanoparticle-modified epoxy resin by using an ultrasonic homogenizer and a planetary centrifugal mixer. Then, these laminate specimens with their matrices modified under various nanofiller ratios were employed to investigate the influence of the number of nanofiller types and hybrid nanofiller ratios on the quasi-static strength, fatigue strength, and mode I fracture toughness. The experimental results show that adding individual types of nanoparticles has a slight influence on the quasi-static and fatigue strengths of the CFEP laminates. However, the remarkable synergistic effect of MWCNTs and GNPs on the studied mechanical properties of the CFEP laminates with matrices reinforced by hybrid nanoparticles has been observed. Examining the evolution of stiffness-based degradation indicates that adding hybrid nanoparticles to the matrix can reduce the degradation effectively. The high experimental data of the mode I fracture toughness of hybrid nano-CFEP laminates demonstrate that embedding hybrid nanoparticles in the matrix is beneficial to the interlaminar properties, further improving the fatigue strength. The pushout mechanism of the MWCNTs and the crack deflection effect of the GNPs suppress the growth and linkage of microcracks in the matrix. Furthermore, the bridging effect of the nanoparticles at the fiber/matrix interface retards the interfacial debonding, further improving the resistance to delamination propagation.
format Online
Article
Text
id pubmed-8706123
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87061232021-12-25 Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers Jen, Yi-Ming Huang, Yu-Ching Nanomaterials (Basel) Article The monotonic and cyclic properties of carbon fiber-reinforced epoxy (CFEP) laminate specimens with matrices modified by multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were experimentally studied. The laminate specimens were fabricated by the hand lay-up procedure and six MWCNT:GNP weight ratios, i.e., 0:0, 10:0, 0:10, 5:5, 9:1, and 1:9, were considered to prepare the nanoparticle-modified epoxy resin by using an ultrasonic homogenizer and a planetary centrifugal mixer. Then, these laminate specimens with their matrices modified under various nanofiller ratios were employed to investigate the influence of the number of nanofiller types and hybrid nanofiller ratios on the quasi-static strength, fatigue strength, and mode I fracture toughness. The experimental results show that adding individual types of nanoparticles has a slight influence on the quasi-static and fatigue strengths of the CFEP laminates. However, the remarkable synergistic effect of MWCNTs and GNPs on the studied mechanical properties of the CFEP laminates with matrices reinforced by hybrid nanoparticles has been observed. Examining the evolution of stiffness-based degradation indicates that adding hybrid nanoparticles to the matrix can reduce the degradation effectively. The high experimental data of the mode I fracture toughness of hybrid nano-CFEP laminates demonstrate that embedding hybrid nanoparticles in the matrix is beneficial to the interlaminar properties, further improving the fatigue strength. The pushout mechanism of the MWCNTs and the crack deflection effect of the GNPs suppress the growth and linkage of microcracks in the matrix. Furthermore, the bridging effect of the nanoparticles at the fiber/matrix interface retards the interfacial debonding, further improving the resistance to delamination propagation. MDPI 2021-12-20 /pmc/articles/PMC8706123/ /pubmed/34947805 http://dx.doi.org/10.3390/nano11123459 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jen, Yi-Ming
Huang, Yu-Ching
Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title_full Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title_fullStr Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title_full_unstemmed Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title_short Improvement in Tensile Quasi-Static and Fatigue Properties of Carbon Fiber-Reinforced Epoxy Laminates with Matrices Modified by Carbon Nanotubes and Graphene Nanoplatelets Hybrid Nanofillers
title_sort improvement in tensile quasi-static and fatigue properties of carbon fiber-reinforced epoxy laminates with matrices modified by carbon nanotubes and graphene nanoplatelets hybrid nanofillers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706123/
https://www.ncbi.nlm.nih.gov/pubmed/34947805
http://dx.doi.org/10.3390/nano11123459
work_keys_str_mv AT jenyiming improvementintensilequasistaticandfatiguepropertiesofcarbonfiberreinforcedepoxylaminateswithmatricesmodifiedbycarbonnanotubesandgraphenenanoplateletshybridnanofillers
AT huangyuching improvementintensilequasistaticandfatiguepropertiesofcarbonfiberreinforcedepoxylaminateswithmatricesmodifiedbycarbonnanotubesandgraphenenanoplateletshybridnanofillers