Cargando…

Targeting AVIL, a New Cytoskeleton Regulator in Glioblastoma

Glioblastoma (GBM) is the most common adult neural malignancy and the deadliest. The standard of care is optimal, safe, cytoreductive surgery followed by combined radiation therapy and alkylating chemotherapy with temozolomide. Recurrence is common and therapeutic options in the recurrent setting ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Cornelison, Robert, Marrah, Laine, Horter, Drew, Lynch, Sarah, Li, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706274/
https://www.ncbi.nlm.nih.gov/pubmed/34948433
http://dx.doi.org/10.3390/ijms222413635
Descripción
Sumario:Glioblastoma (GBM) is the most common adult neural malignancy and the deadliest. The standard of care is optimal, safe, cytoreductive surgery followed by combined radiation therapy and alkylating chemotherapy with temozolomide. Recurrence is common and therapeutic options in the recurrent setting are limited. The dismal prognosis of GBM has led to novel treatments being a serious roadblock in the field, with most new treatments failing to show efficacy. Targeted therapies have shown some success in many cancers, but GBM remains one of the most difficult to treat, especially in recurrence. New chemotherapeutic directions need to be explored, possibly expanding the targeted chemotherapy spectrum in previously unforeseen ways. In this perspective paper, we will explain why AVIL, an actin-binding protein recently found to be overexpressed in GBM and a driving force for GBM, could prove versatile in the fight against cancer. By looking at AVIL and its potential to regulate FOXM1 and LIN28B, we will be able to highlight a way to improve outcomes for GBM patients who normally have very little hope.