Cargando…
Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition
This paper presents a wearable device, fitted on the waist of a participant that recognizes six activities of daily living (walking, walking upstairs, walking downstairs, sitting, standing, and laying) through a deep-learning algorithm, human activity recognition (HAR). The wearable device comprises...
Autores principales: | Yen, Chih-Ta, Liao, Jia-Xian, Huang, Yi-Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706653/ https://www.ncbi.nlm.nih.gov/pubmed/34960388 http://dx.doi.org/10.3390/s21248294 |
Ejemplares similares
-
A Class-Imbalanced Deep Learning Fall Detection Algorithm Using Wearable Sensors
por: Zhang, Jing, et al.
Publicado: (2021) -
A Hierarchical Deep Fusion Framework for Egocentric Activity Recognition using a Wearable Hybrid Sensor System
por: Yu, Haibin, et al.
Publicado: (2019) -
Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances
por: Zhang, Shibo, et al.
Publicado: (2022) -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems
por: Sahoo, Karam Kumar, et al.
Publicado: (2023)