Cargando…

Biodegradable 3D Printed Scaffolds of Modified Poly (Trimethylene Carbonate) Composite Materials with Poly (L-Lactic Acid) and Hydroxyapatite for Bone Regeneration

Biodegradable scaffolds based on biomedical polymeric materials have attracted wide interest in bone transplantation for clinical treatment for bone defects without a second operation. The composite materials of poly(trimethylene carbonate), poly(L-lactic acid), and hydroxyapatite (PTMC/PLA/HA and P...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Honglei, Jiang, Xudong, Liu, Zhiwei, Liu, Fan, Yan, Guoping, Li, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706779/
https://www.ncbi.nlm.nih.gov/pubmed/34947564
http://dx.doi.org/10.3390/nano11123215
Descripción
Sumario:Biodegradable scaffolds based on biomedical polymeric materials have attracted wide interest in bone transplantation for clinical treatment for bone defects without a second operation. The composite materials of poly(trimethylene carbonate), poly(L-lactic acid), and hydroxyapatite (PTMC/PLA/HA and PTMC/HA) were prepared by the modification and blending of PTMC with PLA and HA, respectively. The PTMC/PLA/HA and PTMC/HA scaffolds were further prepared by additive manufacturing using the biological 3D printing method using the PTMC/PLA/HA and PTMC/HA composite materials, respectively. These scaffolds were also characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), automatic contact-angle, scanning electronic micrographs (SEM), diffraction of X-rays (XRD), differential scanning calorimetry (DSC), and thermogravimetry (TG). Subsequently, their properties, such as mechanical, biodegradation, cell cytotoxicity, cell compatibility in vitro, and proliferation/differentiation assay in vivo, were also investigated. Experiment results indicated that PTMC/PLA/HA and PTMC/HA scaffolds possessed low toxicity, good biodegradability, and good biocompatibility and then enhanced the cell multiplication ability of osteoblast cells (MC3T3-E1). Moreover, PTMC/PLA/HA and PTMC/HA scaffolds enhanced the adhesion and proliferation of MC3T3-E1 cells and enabled the bone cell proliferation and induction of bone tissue formation. Therefore, these composite materials can be used as potential biomaterials for bone repatriation and tissue engineering.