Cargando…
A Novel Hybrid Deep Learning Model for Human Activity Recognition Based on Transitional Activities
In recent years, a plethora of algorithms have been devised for efficient human activity recognition. Most of these algorithms consider basic human activities and neglect postural transitions because of their subsidiary occurrence and short duration. However, postural transitions assume a significan...
Autores principales: | Irfan, Saad, Anjum, Nadeem, Masood, Nayyer, Khattak, Ahmad S., Ramzan, Naeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706790/ https://www.ncbi.nlm.nih.gov/pubmed/34960321 http://dx.doi.org/10.3390/s21248227 |
Ejemplares similares
-
Remote Health Monitoring Systems for Elderly People: A Survey
por: Ahmed, Salman, et al.
Publicado: (2023) -
Heartbeat Classification and Arrhythmia Detection Using a Multi-Model Deep-Learning Technique
por: Irfan, Saad, et al.
Publicado: (2022) -
Human Activity Recognition via Hybrid Deep Learning Based Model
por: Khan, Imran Ullah, et al.
Publicado: (2022) -
A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition
por: Abbaspour, Saedeh, et al.
Publicado: (2020) -
[Image: see text] : Oblivious similarity based searching for encrypted data outsourced to an untrusted domain
por: Pervez, Zeeshan, et al.
Publicado: (2017)