Cargando…

Bioprocesses with Reduced Ecological Footprint by Marine Debaryomyces hansenii Strain for Potential Applications in Circular Economy

The possibility to perform bioprocesses with reduced ecological footprint to produce natural compounds and catalyzers of industrial interest is pushing the research for salt tolerant microorganisms able to grow on seawater-based media and able to use a wide range of nutrients coming from waste. In t...

Descripción completa

Detalles Bibliográficos
Autores principales: Donzella, Silvia, Capusoni, Claudia, Pellegrino, Luisa, Compagno, Concetta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706832/
https://www.ncbi.nlm.nih.gov/pubmed/34947010
http://dx.doi.org/10.3390/jof7121028
Descripción
Sumario:The possibility to perform bioprocesses with reduced ecological footprint to produce natural compounds and catalyzers of industrial interest is pushing the research for salt tolerant microorganisms able to grow on seawater-based media and able to use a wide range of nutrients coming from waste. In this study we focused our attention on a Debaryomyces hansenii marine strain (Mo40). We optimized cultivation in a bioreactor at low pH on seawater-based media containing a mixture of sugars (glucose and xylose) and urea. Under these conditions the strain exhibited high growth rate and biomass yield. In addition, we characterized potential applications of this yeast biomass in food/feed industry. We show that Mo40 can produce a biomass containing 45% proteins and 20% lipids. This strain is also able to degrade phytic acid by a cell-bound phytase activity. These features represent an appealing starting point for obtaining D. hansenii biomass in a cheap and environmentally friendly way, and for potential use as an additive or to replace unsustainable ingredients in the feed or food industries, as this species is included in the QPS EFSA list (Quality Presumption as Safe—European Food Safety Authority).