Cargando…

Simplified Analytical Model for Predicting Neutral Cross-Section Position of Lenticular Deployable Composite Boom in Tensile Deformation

Foldable and deployable flexible composite thin-walled structures have the characteristics of light weight, excellent mechanical properties and large deformation ability, which means they have good application prospects in the aerospace field. In this paper, a simplified theoretical model for predic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Li-Wu, Bai, Jiang-Bo, Shi, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706972/
https://www.ncbi.nlm.nih.gov/pubmed/34947403
http://dx.doi.org/10.3390/ma14247809
Descripción
Sumario:Foldable and deployable flexible composite thin-walled structures have the characteristics of light weight, excellent mechanical properties and large deformation ability, which means they have good application prospects in the aerospace field. In this paper, a simplified theoretical model for predicting the position of the neutral section of a lenticular deployable composite boom (DCB) in tensile deformation is proposed. The three-dimensional lenticular DCB is simplified as a two-dimensional spring system and a rigid rod, distributed in parallel along the length direction. The position of the neutral cross-section can be determined by solving the balance equations and geometric relations. In order to verify the validity of the theoretical model, a finite element model of the tensile deformation of a lenticular DCB was established. The theoretical prediction results were compared with the finite element calculation results, and the two results were in good agreement.