Cargando…
MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT
The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs rela...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707110/ https://www.ncbi.nlm.nih.gov/pubmed/34947804 http://dx.doi.org/10.3390/nano11123458 |
_version_ | 1784622356799422464 |
---|---|
author | Ballesteros, Sandra Vales, Gerard Velázquez, Antonia Pastor, Susana Alaraby, Mohamed Marcos, Ricard Hernández, Alba |
author_facet | Ballesteros, Sandra Vales, Gerard Velázquez, Antonia Pastor, Susana Alaraby, Mohamed Marcos, Ricard Hernández, Alba |
author_sort | Ballesteros, Sandra |
collection | PubMed |
description | The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs related to the cell transformation process in BEAS-2B cells transformed by TiO(2)NP and long-term MWCNT exposure. Our battery revealed a large impact on miRNA expression profiling in cells exposed to both NMs. From this analysis, a small set of five miRNAs (miR-23a, miR-25, miR-96, miR-210, and miR-502) were identified as informative biomarkers of the transforming effects induced by NM exposures. The usefulness of this reduced miRNA battery was further validated in other previously generated transformed cell systems by long-term exposure to other NMs (CoNP, ZnONP, MSiNP, and CeO(2)NP). Interestingly, the five selected miRNAs were consistently overexpressed in all cell lines and NMs tested. These results confirm the suitability of the proposed set of mRNAs to identify the potential transforming ability of NMs. Particular attention should be paid to the epigenome and especially to miRNAs for hazard assessment of NMs, as wells as for the study of the underlying mechanisms of action. |
format | Online Article Text |
id | pubmed-8707110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87071102021-12-25 MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT Ballesteros, Sandra Vales, Gerard Velázquez, Antonia Pastor, Susana Alaraby, Mohamed Marcos, Ricard Hernández, Alba Nanomaterials (Basel) Article The presence of nanomaterials (NMs) in the environment may represent a serious risk to human health, especially in a scenario of chronic exposure. To evaluate the potential relationship between NM-induced epigenetic alterations and carcinogenesis, the present study analyzed a panel of 33 miRNAs related to the cell transformation process in BEAS-2B cells transformed by TiO(2)NP and long-term MWCNT exposure. Our battery revealed a large impact on miRNA expression profiling in cells exposed to both NMs. From this analysis, a small set of five miRNAs (miR-23a, miR-25, miR-96, miR-210, and miR-502) were identified as informative biomarkers of the transforming effects induced by NM exposures. The usefulness of this reduced miRNA battery was further validated in other previously generated transformed cell systems by long-term exposure to other NMs (CoNP, ZnONP, MSiNP, and CeO(2)NP). Interestingly, the five selected miRNAs were consistently overexpressed in all cell lines and NMs tested. These results confirm the suitability of the proposed set of mRNAs to identify the potential transforming ability of NMs. Particular attention should be paid to the epigenome and especially to miRNAs for hazard assessment of NMs, as wells as for the study of the underlying mechanisms of action. MDPI 2021-12-20 /pmc/articles/PMC8707110/ /pubmed/34947804 http://dx.doi.org/10.3390/nano11123458 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ballesteros, Sandra Vales, Gerard Velázquez, Antonia Pastor, Susana Alaraby, Mohamed Marcos, Ricard Hernández, Alba MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title | MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title_full | MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title_fullStr | MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title_full_unstemmed | MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title_short | MicroRNAs as a Suitable Biomarker to Detect the Effects of Long-Term Exposures to Nanomaterials. Studies on TiO(2)NP and MWCNT |
title_sort | micrornas as a suitable biomarker to detect the effects of long-term exposures to nanomaterials. studies on tio(2)np and mwcnt |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707110/ https://www.ncbi.nlm.nih.gov/pubmed/34947804 http://dx.doi.org/10.3390/nano11123458 |
work_keys_str_mv | AT ballesterossandra micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT valesgerard micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT velazquezantonia micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT pastorsusana micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT alarabymohamed micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT marcosricard micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt AT hernandezalba micrornasasasuitablebiomarkertodetecttheeffectsoflongtermexposurestonanomaterialsstudiesontio2npandmwcnt |