Cargando…

The Active Isoforms of MGP Are Expressed in Healthy and Varicose Veins without Calcification

Matrix Gla protein (MGP), a local inhibitor of tissue mineralization, is associated with vascular calcification. Depending on the carboxylation and phosphorylation status, MGP has active conformations, e.g., carboxylated MGP (cMGP) and phosphorylated MGP (pMGP), but also inactive conformations, e.g....

Descripción completa

Detalles Bibliográficos
Autores principales: Gheorghe, Simona R., Vermeer, Cees, Olteanu, Gabriel, Silaghi, Ciprian N., Crăciun, Alexandra M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707122/
https://www.ncbi.nlm.nih.gov/pubmed/34945192
http://dx.doi.org/10.3390/jcm10245896
Descripción
Sumario:Matrix Gla protein (MGP), a local inhibitor of tissue mineralization, is associated with vascular calcification. Depending on the carboxylation and phosphorylation status, MGP has active conformations, e.g., carboxylated MGP (cMGP) and phosphorylated MGP (pMGP), but also inactive conformations, e.g., uncarboxylated MGP (ucMGP) and dephosphorylated MGP (dpMGP). Our purpose was to assess the presence of all MGP conformations in healthy veins (HV) and varicose veins (VV), concurrently with the analysis of circulating total MGP (tMGP) before and after the surgical stripping of VV. We collected samples from the great saphenous vein, considered as control group, and tissue from VV, designated as VV group. Plasma levels of tMGP were significantly decreased after the surgical removal of the VV (before 59.5 ± 17.2 vs. after 38.1 ± 11.3, p < 0.001). By using immunohistochemistry staining, we identified local cMGP and pMGP in the control and VV groups, both without calcification, while ucMGP and dpMGP were absent. cMGP was observed in the nucleus and cytoplasm and pMGP in the nucleus of cells belonging to the tunica media, tunica intima and vasa vasorum. Therefore, the active conformations of MGP (cMGP and pMGP) are prevalent in HV and VV without calcification, affirming their anti-calcifying role in veins.