Cargando…
Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
Arsenic, a potent carcinogen and neurotoxin, affects over 200 million people globally. Current detection methods are laborious, expensive, and unscalable, being difficult to implement in developing regions and during crises such as COVID-19. This study attempts to determine if a relationship exists...
Autores principales: | Agrawal, Ayush, Petersen, Mark R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707206/ https://www.ncbi.nlm.nih.gov/pubmed/34941767 http://dx.doi.org/10.3390/toxics9120333 |
Ejemplares similares
-
Automatic Target Detection from Satellite Imagery Using Machine Learning
por: Tahir, Arsalan, et al.
Publicado: (2022) -
Shelter tents mapping by machine learning and satellite imagery
por: Cheng, Hsiu-Chi
Publicado: (2023) -
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
A generalizable and accessible approach to machine learning with global satellite imagery
por: Rolf, Esther, et al.
Publicado: (2021) -
Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning
por: Balaniuk, Remis, et al.
Publicado: (2020)