Cargando…
Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications
SIMPLE SUMMARY: The Chalcididae are a moderate-sized family of the superfamily Chalcidoidea in Hymenoptera, comprising 1548 species in 87 genera worldwide. Some species are potential natural enemies of pests in agriculture and forestry. Currently, there are still some controversies about the monophy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707279/ https://www.ncbi.nlm.nih.gov/pubmed/34940137 http://dx.doi.org/10.3390/insects12121049 |
Sumario: | SIMPLE SUMMARY: The Chalcididae are a moderate-sized family of the superfamily Chalcidoidea in Hymenoptera, comprising 1548 species in 87 genera worldwide. Some species are potential natural enemies of pests in agriculture and forestry. Currently, there are still some controversies about the monophyly of Chalcididae and the phylogenetic relationships between Chalcididae and other families in Chalcidoidea. Based on the fact that no mitogenomic phylogenetic analyses of all of the published mitogenomes of Chalcidoidea have been conducted and no complete mitogenome of Chalcididae species has been reported, two newly completed mitochondrial genomes of Chalcididae species (Brachymeria lasus and Haltichella nipponensis) were sequenced and analyzed. The results show that the two chalcidid mitogenomes have quite similar structures and features. In phylogenetic analyses based on 13 PCGs of mitogenomes, the basal position and monophyly of Chalcididae within Chalcidoidea were supported by all trees derived from maximum likelihood (ML) and Bayesian inference (BI) methods. ABSTRACT: The complete mitochondrial genomes of two species of Chalcididae were newly sequenced: Brachymeria lasus and Haltichella nipponensis. Both circular mitogenomes are 15,147 and 15,334 bp in total length, respectively, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A+T-rich region. The nucleotide composition indicated a strong A/T bias. All PCGs of B. lasus and H. nipponensis began with the start codon ATD, except for B. lasus, which had an abnormal initiation codon TTG in ND1. Most PCGs of the two mitogenomes are terminated by a codon of TAR, and the remaining PCGs by the incomplete stop codon T or TA (ATP6, COX3, and ND4 in both species, with an extra CYTB in B. lasus). Except for trnS1 and trnF, all tRNAs can be folded into a typical clover structure. Both mitogenomes had similar control regions, and two repeat units of 135 bp were found in H. nipponensis. Phylogenetic analyses based on two datasets (PCG123 and PCG12) covering Chalcididae and nine families of Chalcidoidea were conducted using two methods (maximum likelihood and Bayesian inference); all the results support Mymaridae as the sister group of the remaining Chalcidoidea, with Chalcididae as the next successive group. Only analyses of PCG123 generated similar topologies of Mymaridae + (Chalcididae + (Agaonidae + remaining Chalcidoidea)) and provided one relative stable clade as Eulophidae + (Torymidae + (Aphelinidae + Trichogrammatidae)). Our mitogenomic phylogenetic results share one important similarity with earlier molecular phylogenetic efforts: strong support for the monophyly of many families, but a largely unresolved or unstable “backbone” of relationships among families. |
---|