Cargando…
The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network
Surface electromyogram (sEMG) signals are widely employed as a neural control source for lower-limb exoskeletons, in which gait recognition based on sEMG is particularly important. Many scholars have taken measures to improve the accuracy of gait recognition, but several real-time limitations affect...
Autores principales: | Zhang, Xianfu, Hu, Yuping, Luo, Ruimin, Li, Chao, Tang, Zhichuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707310/ https://www.ncbi.nlm.nih.gov/pubmed/34960457 http://dx.doi.org/10.3390/s21248365 |
Ejemplares similares
-
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
por: Wang, Shudi, et al.
Publicado: (2022) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
Voiceless Bangla vowel recognition using sEMG signal
por: Mostafa, S. S., et al.
Publicado: (2016) -
An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features
por: Yang, Xiao, et al.
Publicado: (2022) -
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015)