Cargando…
Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables
Supervised training of human activity recognition (HAR) systems based on body-worn inertial measurement units (IMUs) is often constrained by the typically rather small amounts of labeled sample data. Systems like IMUTube have been introduced that employ cross-modality transfer approaches to convert...
Autores principales: | Kwon, Hyeokhyen, Abowd, Gregory D., Plötz, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707382/ https://www.ncbi.nlm.nih.gov/pubmed/34960431 http://dx.doi.org/10.3390/s21248337 |
Ejemplares similares
-
Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks
por: Jaramillo, Ismael Espinoza, et al.
Publicado: (2022) -
Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables
por: Sherratt, Freddie, et al.
Publicado: (2021) -
Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks
por: Vásconez, Juan Pablo, et al.
Publicado: (2022) -
Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition
por: Bangaru, Srikanth Sagar, et al.
Publicado: (2020) -
IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion
por: Dehzangi, Omid, et al.
Publicado: (2017)