Cargando…
Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes
Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matri...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707399/ https://www.ncbi.nlm.nih.gov/pubmed/34960395 http://dx.doi.org/10.3390/s21248301 |
_version_ | 1784622427332935680 |
---|---|
author | Gričar, Ema Kalcher, Kurt Genorio, Boštjan Kolar, Mitja |
author_facet | Gričar, Ema Kalcher, Kurt Genorio, Boštjan Kolar, Mitja |
author_sort | Gričar, Ema |
collection | PubMed |
description | Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0–300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed. |
format | Online Article Text |
id | pubmed-8707399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87073992021-12-25 Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes Gričar, Ema Kalcher, Kurt Genorio, Boštjan Kolar, Mitja Sensors (Basel) Article Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0–300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed. MDPI 2021-12-11 /pmc/articles/PMC8707399/ /pubmed/34960395 http://dx.doi.org/10.3390/s21248301 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gričar, Ema Kalcher, Kurt Genorio, Boštjan Kolar, Mitja Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title | Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title_full | Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title_fullStr | Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title_full_unstemmed | Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title_short | Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO(2) Modified Carbon Paste Electrodes |
title_sort | highly sensitive amperometric detection of hydrogen peroxide in saliva based on n-doped graphene nanoribbons and mno(2) modified carbon paste electrodes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707399/ https://www.ncbi.nlm.nih.gov/pubmed/34960395 http://dx.doi.org/10.3390/s21248301 |
work_keys_str_mv | AT gricarema highlysensitiveamperometricdetectionofhydrogenperoxideinsalivabasedonndopedgraphenenanoribbonsandmno2modifiedcarbonpasteelectrodes AT kalcherkurt highlysensitiveamperometricdetectionofhydrogenperoxideinsalivabasedonndopedgraphenenanoribbonsandmno2modifiedcarbonpasteelectrodes AT genoriobostjan highlysensitiveamperometricdetectionofhydrogenperoxideinsalivabasedonndopedgraphenenanoribbonsandmno2modifiedcarbonpasteelectrodes AT kolarmitja highlysensitiveamperometricdetectionofhydrogenperoxideinsalivabasedonndopedgraphenenanoribbonsandmno2modifiedcarbonpasteelectrodes |