Cargando…

Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection

Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics a...

Descripción completa

Detalles Bibliográficos
Autores principales: Akbar, Sehrish, Yao, Wei, Qin, Lifang, Yuan, Yuan, Powell, Charles A., Chen, Baoshan, Zhang, Muqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707430/
https://www.ncbi.nlm.nih.gov/pubmed/34948367
http://dx.doi.org/10.3390/ijms222413574
Descripción
Sumario:Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.