Cargando…
Saliency Detection with Moving Camera via Background Model Completion
Detecting saliency in videos is a fundamental step in many computer vision systems. Saliency is the significant target(s) in the video. The object of interest is further analyzed for high-level applications. The segregation of saliency and the background can be made if they exhibit different visual...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707474/ https://www.ncbi.nlm.nih.gov/pubmed/34960461 http://dx.doi.org/10.3390/s21248374 |
_version_ | 1784622445683015680 |
---|---|
author | Zhang, Yu-Pei Chan, Kwok-Leung |
author_facet | Zhang, Yu-Pei Chan, Kwok-Leung |
author_sort | Zhang, Yu-Pei |
collection | PubMed |
description | Detecting saliency in videos is a fundamental step in many computer vision systems. Saliency is the significant target(s) in the video. The object of interest is further analyzed for high-level applications. The segregation of saliency and the background can be made if they exhibit different visual cues. Therefore, saliency detection is often formulated as background subtraction. However, saliency detection is challenging. For instance, dynamic background can result in false positive errors. In another scenario, camouflage will result in false negative errors. With moving cameras, the captured scenes are even more complicated to handle. We propose a new framework, called saliency detection via background model completion (SD-BMC), that comprises a background modeler and a deep learning background/foreground segmentation network. The background modeler generates an initial clean background image from a short image sequence. Based on the idea of video completion, a good background frame can be synthesized with the co-existence of changing background and moving objects. We adopt the background/foreground segmenter, which was pre-trained with a specific video dataset. It can also detect saliency in unseen videos. The background modeler can adjust the background image dynamically when the background/foreground segmenter output deteriorates during processing a long video. To the best of our knowledge, our framework is the first one to adopt video completion for background modeling and saliency detection in videos captured by moving cameras. The F-measure results, obtained from the pan-tilt-zoom (PTZ) videos, show that our proposed framework outperforms some deep learning-based background subtraction models by 11% or more. With more challenging videos, our framework also outperforms many high-ranking background subtraction methods by more than 3%. |
format | Online Article Text |
id | pubmed-8707474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87074742021-12-25 Saliency Detection with Moving Camera via Background Model Completion Zhang, Yu-Pei Chan, Kwok-Leung Sensors (Basel) Article Detecting saliency in videos is a fundamental step in many computer vision systems. Saliency is the significant target(s) in the video. The object of interest is further analyzed for high-level applications. The segregation of saliency and the background can be made if they exhibit different visual cues. Therefore, saliency detection is often formulated as background subtraction. However, saliency detection is challenging. For instance, dynamic background can result in false positive errors. In another scenario, camouflage will result in false negative errors. With moving cameras, the captured scenes are even more complicated to handle. We propose a new framework, called saliency detection via background model completion (SD-BMC), that comprises a background modeler and a deep learning background/foreground segmentation network. The background modeler generates an initial clean background image from a short image sequence. Based on the idea of video completion, a good background frame can be synthesized with the co-existence of changing background and moving objects. We adopt the background/foreground segmenter, which was pre-trained with a specific video dataset. It can also detect saliency in unseen videos. The background modeler can adjust the background image dynamically when the background/foreground segmenter output deteriorates during processing a long video. To the best of our knowledge, our framework is the first one to adopt video completion for background modeling and saliency detection in videos captured by moving cameras. The F-measure results, obtained from the pan-tilt-zoom (PTZ) videos, show that our proposed framework outperforms some deep learning-based background subtraction models by 11% or more. With more challenging videos, our framework also outperforms many high-ranking background subtraction methods by more than 3%. MDPI 2021-12-15 /pmc/articles/PMC8707474/ /pubmed/34960461 http://dx.doi.org/10.3390/s21248374 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yu-Pei Chan, Kwok-Leung Saliency Detection with Moving Camera via Background Model Completion |
title | Saliency Detection with Moving Camera via Background Model Completion |
title_full | Saliency Detection with Moving Camera via Background Model Completion |
title_fullStr | Saliency Detection with Moving Camera via Background Model Completion |
title_full_unstemmed | Saliency Detection with Moving Camera via Background Model Completion |
title_short | Saliency Detection with Moving Camera via Background Model Completion |
title_sort | saliency detection with moving camera via background model completion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707474/ https://www.ncbi.nlm.nih.gov/pubmed/34960461 http://dx.doi.org/10.3390/s21248374 |
work_keys_str_mv | AT zhangyupei saliencydetectionwithmovingcameraviabackgroundmodelcompletion AT chankwokleung saliencydetectionwithmovingcameraviabackgroundmodelcompletion |