Cargando…
Combining Implicit and Explicit Feature Extraction for Eye Tracking: Attention Classification Using a Heterogeneous Input
Statistical measurements of eye movement-specific properties, such as fixations, saccades, blinks, or pupil dilation, are frequently utilized as input features for machine learning algorithms applied to eye tracking recordings. These characteristics are intended to be interpretable aspects of eye ga...
Autores principales: | Vortmann, Lisa-Marie, Putze, Felix |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707750/ https://www.ncbi.nlm.nih.gov/pubmed/34960295 http://dx.doi.org/10.3390/s21248205 |
Ejemplares similares
-
Imaging Time Series of Eye Tracking Data to Classify Attentional States
por: Vortmann, Lisa-Marie, et al.
Publicado: (2021) -
EEG-Based Classification of Internally- and Externally-Directed Attention in an Augmented Reality Paradigm
por: Vortmann, Lisa-Marie, et al.
Publicado: (2019) -
AtAwAR Translate: Attention-Aware Language Translation Application in Augmented Reality for Mobile Phones
por: Vortmann, Lisa-Marie, et al.
Publicado: (2022) -
Implicitly and explicitly encoded features can guide attention in free viewing
por: Li, Aoqi, et al.
Publicado: (2020) -
Preserved implicit mentalizing in schizophrenia despite poor explicit performance: evidence from eye tracking
por: Roux, Paul, et al.
Publicado: (2016)