Cargando…

Transdermal Drug Delivery in the Pig Skin

Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ordiz, Ignacio, Vega, José A., Martín-Sanz, Raquel, García-Suárez, Olivia, del Valle, Miguel E., Feito, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707795/
https://www.ncbi.nlm.nih.gov/pubmed/34959299
http://dx.doi.org/10.3390/pharmaceutics13122016
_version_ 1784622525087481856
author Ordiz, Ignacio
Vega, José A.
Martín-Sanz, Raquel
García-Suárez, Olivia
del Valle, Miguel E.
Feito, Jorge
author_facet Ordiz, Ignacio
Vega, José A.
Martín-Sanz, Raquel
García-Suárez, Olivia
del Valle, Miguel E.
Feito, Jorge
author_sort Ordiz, Ignacio
collection PubMed
description Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.
format Online
Article
Text
id pubmed-8707795
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87077952021-12-25 Transdermal Drug Delivery in the Pig Skin Ordiz, Ignacio Vega, José A. Martín-Sanz, Raquel García-Suárez, Olivia del Valle, Miguel E. Feito, Jorge Pharmaceutics Article Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule. MDPI 2021-11-26 /pmc/articles/PMC8707795/ /pubmed/34959299 http://dx.doi.org/10.3390/pharmaceutics13122016 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ordiz, Ignacio
Vega, José A.
Martín-Sanz, Raquel
García-Suárez, Olivia
del Valle, Miguel E.
Feito, Jorge
Transdermal Drug Delivery in the Pig Skin
title Transdermal Drug Delivery in the Pig Skin
title_full Transdermal Drug Delivery in the Pig Skin
title_fullStr Transdermal Drug Delivery in the Pig Skin
title_full_unstemmed Transdermal Drug Delivery in the Pig Skin
title_short Transdermal Drug Delivery in the Pig Skin
title_sort transdermal drug delivery in the pig skin
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707795/
https://www.ncbi.nlm.nih.gov/pubmed/34959299
http://dx.doi.org/10.3390/pharmaceutics13122016
work_keys_str_mv AT ordizignacio transdermaldrugdeliveryinthepigskin
AT vegajosea transdermaldrugdeliveryinthepigskin
AT martinsanzraquel transdermaldrugdeliveryinthepigskin
AT garciasuarezolivia transdermaldrugdeliveryinthepigskin
AT delvallemiguele transdermaldrugdeliveryinthepigskin
AT feitojorge transdermaldrugdeliveryinthepigskin