Cargando…
Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature
The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707851/ https://www.ncbi.nlm.nih.gov/pubmed/34946026 http://dx.doi.org/10.3390/microorganisms9122425 |
_version_ | 1784622539277860864 |
---|---|
author | Nõlvak, Hiie Dang, Nga Phuong Truu, Marika Peeb, Angela Tiirik, Kertu O’Sadnick, Megan Truu, Jaak |
author_facet | Nõlvak, Hiie Dang, Nga Phuong Truu, Marika Peeb, Angela Tiirik, Kertu O’Sadnick, Megan Truu, Jaak |
author_sort | Nõlvak, Hiie |
collection | PubMed |
description | The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe. |
format | Online Article Text |
id | pubmed-8707851 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87078512021-12-25 Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature Nõlvak, Hiie Dang, Nga Phuong Truu, Marika Peeb, Angela Tiirik, Kertu O’Sadnick, Megan Truu, Jaak Microorganisms Article The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe. MDPI 2021-11-24 /pmc/articles/PMC8707851/ /pubmed/34946026 http://dx.doi.org/10.3390/microorganisms9122425 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nõlvak, Hiie Dang, Nga Phuong Truu, Marika Peeb, Angela Tiirik, Kertu O’Sadnick, Megan Truu, Jaak Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title | Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title_full | Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title_fullStr | Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title_full_unstemmed | Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title_short | Microbial Community Dynamics during Biodegradation of Crude Oil and Its Response to Biostimulation in Svalbard Seawater at Low Temperature |
title_sort | microbial community dynamics during biodegradation of crude oil and its response to biostimulation in svalbard seawater at low temperature |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707851/ https://www.ncbi.nlm.nih.gov/pubmed/34946026 http://dx.doi.org/10.3390/microorganisms9122425 |
work_keys_str_mv | AT nolvakhiie microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT dangngaphuong microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT truumarika microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT peebangela microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT tiirikkertu microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT osadnickmegan microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature AT truujaak microbialcommunitydynamicsduringbiodegradationofcrudeoilanditsresponsetobiostimulationinsvalbardseawateratlowtemperature |