Cargando…

Identification of an Exopolysaccharide Biosynthesis Gene in Bradyrhizobium diazoefficiens USDA110

Exopolysaccharides (EPS) play critical roles in rhizobium-plant interactions. However, the EPS biosynthesis pathway in Bradyrhizobium diazoefficiens USDA110 remains elusive. Here we used transposon (Tn) mutagenesis with the aim to identify genetic elements required for EPS biosynthesis in B. diazoef...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chunxia, Ruan, Huaqin, Cai, Wenjie, Staehelin, Christian, Dai, Weijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707904/
https://www.ncbi.nlm.nih.gov/pubmed/34946092
http://dx.doi.org/10.3390/microorganisms9122490
Descripción
Sumario:Exopolysaccharides (EPS) play critical roles in rhizobium-plant interactions. However, the EPS biosynthesis pathway in Bradyrhizobium diazoefficiens USDA110 remains elusive. Here we used transposon (Tn) mutagenesis with the aim to identify genetic elements required for EPS biosynthesis in B. diazoefficiens USDA110. Phenotypic screening of Tn5 insertion mutants grown on agar plates led to the identification of a mutant with a transposon insertion site in the blr2358 gene. This gene is predicted to encode a phosphor-glycosyltransferase that transfers a phosphosugar onto a polyprenol phosphate substrate. The disruption of the blr2358 gene resulted in defective EPS synthesis. Accordingly, the blr2358 mutant showed a reduced capacity to induce nodules and stimulate the growth of soybean plants. Glycosyltransferase genes related to blr2358 were found to be well conserved and widely distributed among strains of the Bradyrhizobium genus. In conclusion, our study resulted in identification of a gene involved in EPS biosynthesis and highlights the importance of EPS in the symbiotic interaction between USDA110 and soybeans.