Cargando…
Predictive Model for Drug-Induced Liver Injury Using Deep Neural Networks Based on Substructure Space
Drug-induced liver injury (DILI) is a major concern for drug developers, regulators, and clinicians. However, there is no adequate model system to assess drug-associated DILI risk in humans. In the big data era, computational models are expected to play a revolutionary role in this field. This study...
Autores principales: | Kang, Myung-Gyun, Kang, Nam Sook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707960/ https://www.ncbi.nlm.nih.gov/pubmed/34946636 http://dx.doi.org/10.3390/molecules26247548 |
Ejemplares similares
-
Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network
por: Yang, Ziduo, et al.
Publicado: (2022) -
Substructure-based neural machine translation for retrosynthetic prediction
por: Ucak, Umit V., et al.
Publicado: (2021) -
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023) -
Searching substructures in fragment spaces
por: Ehrlich, H-C, et al.
Publicado: (2011) -
Explaining compound activity predictions with a substructure-aware loss for graph neural networks
por: Amara, Kenza, et al.
Publicado: (2023)