Cargando…

Aminopropylimidazole as an Advantageous Coating in the Synthesis of Functionalized Magnetite Nanoparticles

Implementing new methods to prepare magnetite nanoparticles with a covered or uncovered surface has been, and still is, a significant challenge. In this work, we describe a very clear and effortless way for the preparation of magnetite nanoparticles using two types of bases, namely: 1-(3-aminopropyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Nan, Alexandrina, Ganea, Iolanda-Veronica, Macavei, Sergiu, Turcu, Rodica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708001/
https://www.ncbi.nlm.nih.gov/pubmed/34947627
http://dx.doi.org/10.3390/nano11123276
Descripción
Sumario:Implementing new methods to prepare magnetite nanoparticles with a covered or uncovered surface has been, and still is, a significant challenge. In this work, we describe a very clear and effortless way for the preparation of magnetite nanoparticles using two types of bases, namely: 1-(3-aminopropyl)imidazole and sodium hydroxide. Fourier transform infrared spectroscopy (FTIR) served as a tool for the structural investigation of the as-prepared magnetite nanoparticles. The morphology of the samples was investigated using Transmission Electron Microscopy (TEM). Comprehensive high-resolution X-ray photoelectron spectroscopy investigations (XPS) were applied as an effective tool for analyzing the composition of the various types of magnetic nanoparticles. Further polymer linkage was accomplished with poly(benzofuran-co-arylacetic acid) on the amino-functionalized surface of aminopropylimidazole-containing magnetic nanoparticles. The findings are promising for biomedicine, catalysis, and nanotechnology applications.