Cargando…

Mechanical Properties and Thermal Conductivity of Thermal Insulation Board Containing Recycled Thermosetting Polyurethane and Thermoplastic

This study used a mechanochemical method to analyze the recycling mechanism of polyurethane foam and optimize the recycling process. The use of mechanochemical methods to regenerate the polyurethane foam powder breaks the C–O bond of the polyurethane foam and greatly enhances the activity of the pow...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Ping, Ruan, Haoda, Wang, Congyang, Lu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708046/
https://www.ncbi.nlm.nih.gov/pubmed/34960962
http://dx.doi.org/10.3390/polym13244411
Descripción
Sumario:This study used a mechanochemical method to analyze the recycling mechanism of polyurethane foam and optimize the recycling process. The use of mechanochemical methods to regenerate the polyurethane foam powder breaks the C–O bond of the polyurethane foam and greatly enhances the activity of the powder. Based on orthogonal test design, the mesh, proportion, temperature, and time were selected to produce nine recycled boards by heat pressing. Then, the influence of four factors on the thermal conductivity and tensile strength of the recycled board was analyzed. The results show that 120 mesh polyurethane foam powder has strong activity, and the tensile strength can reach 9.913 Mpa when it is formed at 205 °C and 40 min with 50% PP powder. With the help of the low thermal conductivity of the polyurethane foam, the thermal conductivity of the recycled board can reach 0.037 W/m·K at the parameter of 40 mesh, 80%, 185 °C, 30 min. This research provides an effective method for the recycling of polyurethane foam.