Cargando…

Thermal Cloak: Theory, Experiment and Application

In the past two decades, owing to the development of metamaterials and the theoretical tools of transformation optics and the scattering cancellation method, a plethora of unprecedented functional devices, especially invisibility cloaks, have been experimentally demonstrated in various fields, e.g.,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Xiuli, Nangong, Junyi, Chen, Peiyan, Han, Tiancheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708112/
https://www.ncbi.nlm.nih.gov/pubmed/34947428
http://dx.doi.org/10.3390/ma14247835
Descripción
Sumario:In the past two decades, owing to the development of metamaterials and the theoretical tools of transformation optics and the scattering cancellation method, a plethora of unprecedented functional devices, especially invisibility cloaks, have been experimentally demonstrated in various fields, e.g., electromagnetics, acoustics, and thermodynamics. Since the first thermal cloak was theoretically reported in 2008 and experimentally demonstrated in 2012, great progress has been made in both theory and experiment. In this review, we report the recent advances in thermal cloaks, including the theoretical designs, experimental realizations, and potential applications. The three areas are classified according to the different mechanisms of heat transfer, namely, thermal conduction, thermal convection, and thermal radiation. We also provide an outlook toward the challenges and future directions in this fascinating area.