Cargando…

Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A

Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from...

Descripción completa

Detalles Bibliográficos
Autores principales: Olech, Monika, Kuźmak, Jacek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708130/
https://www.ncbi.nlm.nih.gov/pubmed/34960798
http://dx.doi.org/10.3390/v13122529
_version_ 1784622606893187072
author Olech, Monika
Kuźmak, Jacek
author_facet Olech, Monika
Kuźmak, Jacek
author_sort Olech, Monika
collection PubMed
description Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.
format Online
Article
Text
id pubmed-8708130
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87081302021-12-25 Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A Olech, Monika Kuźmak, Jacek Viruses Article Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo. MDPI 2021-12-16 /pmc/articles/PMC8708130/ /pubmed/34960798 http://dx.doi.org/10.3390/v13122529 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Olech, Monika
Kuźmak, Jacek
Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title_full Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title_fullStr Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title_full_unstemmed Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title_short Molecular Characterization of Small Ruminant Lentiviruses in Polish Mixed Flocks Supports Evidence of Cross Species Transmission, Dual Infection, a Recombination Event, and Reveals the Existence of New Subtypes within Group A
title_sort molecular characterization of small ruminant lentiviruses in polish mixed flocks supports evidence of cross species transmission, dual infection, a recombination event, and reveals the existence of new subtypes within group a
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708130/
https://www.ncbi.nlm.nih.gov/pubmed/34960798
http://dx.doi.org/10.3390/v13122529
work_keys_str_mv AT olechmonika molecularcharacterizationofsmallruminantlentivirusesinpolishmixedflockssupportsevidenceofcrossspeciestransmissiondualinfectionarecombinationeventandrevealstheexistenceofnewsubtypeswithingroupa
AT kuzmakjacek molecularcharacterizationofsmallruminantlentivirusesinpolishmixedflockssupportsevidenceofcrossspeciestransmissiondualinfectionarecombinationeventandrevealstheexistenceofnewsubtypeswithingroupa