Cargando…
A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov–Smirnov Test
Pipeline leakage remains a challenge in various industries. Acoustic emission (AE) technology has recently shown great potential for leak diagnosis. Many AE features, such as root mean square (RMS), peak value, standard deviation, mean value, and entropy, have been suggested to detect leaks. However...
Autores principales: | Rai, Akhand, Ahmad, Zahoor, Hasan, Md Junayed, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708146/ https://www.ncbi.nlm.nih.gov/pubmed/34960342 http://dx.doi.org/10.3390/s21248247 |
Ejemplares similares
-
Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test
por: Closas, Pau, et al.
Publicado: (2012) -
The signed Kolmogorov-Smirnov test: why it should not be used
por: Filion, Guillaume J
Publicado: (2015) -
Blind Interleaver Parameters Estimation Using Kolmogorov–Smirnov Test
por: Wee, Seungwoo, et al.
Publicado: (2021) -
Performance Degradation Assessment of Concrete Beams Based on Acoustic Emission Burst Features and Mahalanobis—Taguchi System
por: Habib, Md Arafat, et al.
Publicado: (2020) -
Leak State Detection and Size Identification for Fluid Pipelines with a Novel Acoustic Emission Intensity Index and Random Forest
por: Nguyen, Tuan-Khai, et al.
Publicado: (2023)