Cargando…
MicroRNA-Target Interaction Regulatory Network in Alzheimer’s Disease
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708198/ https://www.ncbi.nlm.nih.gov/pubmed/34945753 http://dx.doi.org/10.3390/jpm11121275 |
Sumario: | Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across databases and publications, thus making the identification of promising miRNA biomarkers for AD difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis. Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1, SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed seven subnetworks, representing disease modules which have a potential for further biomarker development. The obtained MTI network is not yet complete, and additional studies are needed for the comprehensive understanding of the AD-associated miRNA targetome. |
---|