Cargando…
Development of 3D Slurry Printing Technology with Submersion-Light Apparatus in Dental Application
This study proposes an innovative three-dimensional printing technology with submersion-light apparatus. A zirconia powder with an average particle size of 0.5 µm is mixed with 1,6-Hexanediol diacrylate (HDDA) and photo-initiator to form a slurry. The weight percentage of zirconia powder to HDDA is...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708360/ https://www.ncbi.nlm.nih.gov/pubmed/34947467 http://dx.doi.org/10.3390/ma14247873 |
Sumario: | This study proposes an innovative three-dimensional printing technology with submersion-light apparatus. A zirconia powder with an average particle size of 0.5 µm is mixed with 1,6-Hexanediol diacrylate (HDDA) and photo-initiator to form a slurry. The weight percentage of zirconia powder to HDDA is 70:30 wt.%. A light engine box is submerged in a slurry and emits a layered pattern to induce photopolymerization and transform a slurry into a printed green body. Green body sintering parameters for the first and second stages are 380 °C with a holding time of 1.5 h and 1550 °C with a holding time of 2 h. The sintered parts’ length, width, and height shrinkage ratios are 29.9%, 29.7%, and 30.6%. The ball milling decreases the powder particle size to 158 ± 16 nm and the mean grain size of the sintered part is 423 ± 25 nm. The sintered part has an average hardness of 1224 (HV), a density of 5.45 g/cm(3), and a flexural strength of 641.04 MPa. A three-unit zirconia dental bridge also has been fabricated with a clinically acceptable marginal gap. |
---|