Cargando…
Deep Learning to Distinguish ABCA4-Related Stargardt Disease from PRPH2-Related Pseudo-Stargardt Pattern Dystrophy
(1) Background: Recessive Stargardt disease (STGD1) and multifocal pattern dystrophy simulating Stargardt disease (“pseudo-Stargardt pattern dystrophy”, PSPD) share phenotypic similitudes, leading to a difficult clinical diagnosis. Our aim was to assess whether a deep learning classifier pretrained...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708395/ https://www.ncbi.nlm.nih.gov/pubmed/34945039 http://dx.doi.org/10.3390/jcm10245742 |
Sumario: | (1) Background: Recessive Stargardt disease (STGD1) and multifocal pattern dystrophy simulating Stargardt disease (“pseudo-Stargardt pattern dystrophy”, PSPD) share phenotypic similitudes, leading to a difficult clinical diagnosis. Our aim was to assess whether a deep learning classifier pretrained on fundus autofluorescence (FAF) images can assist in distinguishing ABCA4-related STGD1 from the PRPH2/RDS-related PSPD and to compare the performance with that of retinal specialists. (2) Methods: We trained a convolutional neural network (CNN) using 729 FAF images from normal patients or patients with inherited retinal diseases (IRDs). Transfer learning was then used to update the weights of a ResNet50V2 used to classify the 370 FAF images into STGD1 and PSPD. Retina specialists evaluated the same dataset. The performance of the CNN and that of retina specialists were compared in terms of accuracy, sensitivity, and precision. (3) Results: The CNN accuracy on the test dataset of 111 images was 0.882. The AUROC was 0.890, the precision was 0.883 and the sensitivity was 0.883. The accuracy for retina experts averaged 0.816, whereas for retina fellows it averaged 0.724. (4) Conclusions: This proof-of-concept study demonstrates that, even with small databases, a pretrained CNN is able to distinguish between STGD1 and PSPD with good accuracy. |
---|