Cargando…
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
Accurate traffic flow prediction is essential to building a smart transportation city. Existing research mainly uses a given single-graph structure as a model, only considers local and static spatial dependencies, and ignores the impact of dynamic spatio-temporal data diversity. To fully capture the...
Autores principales: | Yu, Kun, Qin, Xizhong, Jia, Zhenhong, Du, Yan, Lin, Mengmeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708434/ https://www.ncbi.nlm.nih.gov/pubmed/34960560 http://dx.doi.org/10.3390/s21248468 |
Ejemplares similares
-
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
por: Zhang, Qingyong, et al.
Publicado: (2023)