Cargando…
Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation
A correct assessment of the pathologies that can affect a reinforced concrete structure is required in order to define the repair procedure. This work addresses the challenge of quantifying chlorides and sulphates directly on the surface of concrete. The quantification was carried out by means of X-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708456/ https://www.ncbi.nlm.nih.gov/pubmed/34947487 http://dx.doi.org/10.3390/ma14247892 |
_version_ | 1784622689532510208 |
---|---|
author | Chinchón-Payá, Servando Torres Martín, Julio E. Silva Toledo, Antonio Sánchez Montero, Javier |
author_facet | Chinchón-Payá, Servando Torres Martín, Julio E. Silva Toledo, Antonio Sánchez Montero, Javier |
author_sort | Chinchón-Payá, Servando |
collection | PubMed |
description | A correct assessment of the pathologies that can affect a reinforced concrete structure is required in order to define the repair procedure. This work addresses the challenge of quantifying chlorides and sulphates directly on the surface of concrete. The quantification was carried out by means of X-ray fluorescence analysis on the surface of concrete specimens at different points with portable equipment. Concrete prisms were made with different amounts of NaCl and Na(2)SO(4). To avoid the influence of coarse aggregate, a qualitative estimate of the amount of coarse aggregate analyzed has been made, although the results show that there is no significant influence. Monte Carlo simulations were carried out in order to establish the necessary number of random analyses of the mean value to be within an acceptable range of error. In the case of quantifying sulphates, it is necessary to carry out six random analyses on the surface, and eight measurements in the case of quantifying chlorides; in this way, it is ensured that errors are below 10% in 95% of the cases. The results of the study highlight that a portable XRF device can be used in situ to obtain concentrations of chlorides and sulphates of a concrete surface with good accuracy. There is no need to take samples and bring them to a laboratory, allowing lower overall costs in inspection and reparation works. |
format | Online Article Text |
id | pubmed-8708456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87084562021-12-25 Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation Chinchón-Payá, Servando Torres Martín, Julio E. Silva Toledo, Antonio Sánchez Montero, Javier Materials (Basel) Article A correct assessment of the pathologies that can affect a reinforced concrete structure is required in order to define the repair procedure. This work addresses the challenge of quantifying chlorides and sulphates directly on the surface of concrete. The quantification was carried out by means of X-ray fluorescence analysis on the surface of concrete specimens at different points with portable equipment. Concrete prisms were made with different amounts of NaCl and Na(2)SO(4). To avoid the influence of coarse aggregate, a qualitative estimate of the amount of coarse aggregate analyzed has been made, although the results show that there is no significant influence. Monte Carlo simulations were carried out in order to establish the necessary number of random analyses of the mean value to be within an acceptable range of error. In the case of quantifying sulphates, it is necessary to carry out six random analyses on the surface, and eight measurements in the case of quantifying chlorides; in this way, it is ensured that errors are below 10% in 95% of the cases. The results of the study highlight that a portable XRF device can be used in situ to obtain concentrations of chlorides and sulphates of a concrete surface with good accuracy. There is no need to take samples and bring them to a laboratory, allowing lower overall costs in inspection and reparation works. MDPI 2021-12-20 /pmc/articles/PMC8708456/ /pubmed/34947487 http://dx.doi.org/10.3390/ma14247892 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chinchón-Payá, Servando Torres Martín, Julio E. Silva Toledo, Antonio Sánchez Montero, Javier Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title | Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title_full | Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title_fullStr | Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title_full_unstemmed | Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title_short | Quantification of Chlorides and Sulphates on Concrete Surfaces Using Portable X-ray Fluorescence. Optimization of the Measurement Method Using Monte Carlo Simulation |
title_sort | quantification of chlorides and sulphates on concrete surfaces using portable x-ray fluorescence. optimization of the measurement method using monte carlo simulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708456/ https://www.ncbi.nlm.nih.gov/pubmed/34947487 http://dx.doi.org/10.3390/ma14247892 |
work_keys_str_mv | AT chinchonpayaservando quantificationofchloridesandsulphatesonconcretesurfacesusingportablexrayfluorescenceoptimizationofthemeasurementmethodusingmontecarlosimulation AT torresmartinjulioe quantificationofchloridesandsulphatesonconcretesurfacesusingportablexrayfluorescenceoptimizationofthemeasurementmethodusingmontecarlosimulation AT silvatoledoantonio quantificationofchloridesandsulphatesonconcretesurfacesusingportablexrayfluorescenceoptimizationofthemeasurementmethodusingmontecarlosimulation AT sanchezmonterojavier quantificationofchloridesandsulphatesonconcretesurfacesusingportablexrayfluorescenceoptimizationofthemeasurementmethodusingmontecarlosimulation |