Cargando…

Reconfigurable Disk-like Microswarm under a Sawtooth Magnetic Field

Swarming robotic systems, which stem from insect swarms in nature, exhibit a high level of environmental adaptability and enhanced tasking capabilities for targeted delivery and micromanipulation. Here, we present a strategy that reconfigures paramagnetic nanoparticles into microswarms energized by...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tao, Deng, Yuguo, Zhou, Bo, Liu, Jiayu, Su, Yufeng, Li, Mu, Zhang, Weiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708609/
https://www.ncbi.nlm.nih.gov/pubmed/34945379
http://dx.doi.org/10.3390/mi12121529
Descripción
Sumario:Swarming robotic systems, which stem from insect swarms in nature, exhibit a high level of environmental adaptability and enhanced tasking capabilities for targeted delivery and micromanipulation. Here, we present a strategy that reconfigures paramagnetic nanoparticles into microswarms energized by a sawtooth magnetic field. A rotary-stepping magnetic-chain mechanism is proposed to address the forming principle of disk-like swarms. Based on programming the sawtooth field, the microswarm can perform reversible transformations between a disk, an ellipse and a ribbon, as well as splitting and merging. In addition, the swarms can be steered in any direction with excellent maneuverability and a high level of pattern stability. Under accurate manipulation of a magnetic microswarm, multiple microparts with complicated shapes were successfully combined into a complete assembly. This reconfigurable swarming microrobot may shed light on the understanding of complex morphological transformations in living systems and provide future practical applications of microfabrication and micromanipulation.