Cargando…
The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood
Traditional flame retardants often contain halogens and produce toxic gases when burned. Hence, in this study, low-cost, environmentally friendly compounds that act as fire retardants are investigated. These materials often contain nanoparticles, from which TiO(2) and SiO(2) are the most promising....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708733/ https://www.ncbi.nlm.nih.gov/pubmed/34947756 http://dx.doi.org/10.3390/nano11123405 |
Sumario: | Traditional flame retardants often contain halogens and produce toxic gases when burned. Hence, in this study, low-cost, environmentally friendly compounds that act as fire retardants are investigated. These materials often contain nanoparticles, from which TiO(2) and SiO(2) are the most promising. In this work, pedunculate oak wood specimens were modified with sodium silicate (Na(2)SiO(3), i.e., water glass) and TiO(2), SiO(2), and ZnO nanoparticles using the vacuum-pressure technique. Changes in the samples and fire characteristics of modified wood were studied via thermal analysis (TA), infrared spectroscopy (FTIR), and scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The results of TA showed the most significant wood decomposition at a temperature of 350 °C, with a non-significant influence of the nanoparticles. A dominant effect of sodium silicate was observed in the main weight-loss step, resulting in a drop in decomposition temperature within the temperature range of 36–44 °C. More intensive decomposition of wood treated with water glass and nanoparticles led to a faster release of non-combustible gases, which slowed down the combustion process. The results demonstrated that wood modifications using sodium silicate and nanoparticle systems have potentially enhanced flame retardant properties. |
---|