Cargando…
Domain Adaptation of Synthetic Images for Wheat Head Detection
Wheat head detection is a core computer vision problem related to plant phenotyping that in recent years has seen increased interest as large-scale datasets have been made available for use in research. In deep learning problems with limited training data, synthetic data have been shown to improve p...
Autores principales: | Hartley, Zane K. J., French, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708756/ https://www.ncbi.nlm.nih.gov/pubmed/34961104 http://dx.doi.org/10.3390/plants10122633 |
Ejemplares similares
-
GANana: Unsupervised Domain Adaptation for Volumetric Regression of Fruit
por: Hartley, Zane K. J., et al.
Publicado: (2021) -
Global Wheat Head Detection 2021: An Improved Dataset for Benchmarking Wheat Head Detection Methods
por: David, Etienne, et al.
Publicado: (2021) -
Wildfire Smoke Classification Based on Synthetic Images and Pixel- and Feature-Level Domain Adaptation
por: Mao, Jun, et al.
Publicado: (2021) -
ADFSNet: An Adaptive Domain Feature Separation Network for the Classification of Wheat Seed Using Hyperspectral Images
por: Zhao, Xin, et al.
Publicado: (2023) -
Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods
por: David, Etienne, et al.
Publicado: (2020)