Cargando…
Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses
Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their function...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708795/ https://www.ncbi.nlm.nih.gov/pubmed/34948302 http://dx.doi.org/10.3390/ijms222413501 |
_version_ | 1784622775108894720 |
---|---|
author | Yu, Qian Liu, Ya-Li Sun, Guo-Zhong Liu, Yuan-Xia Chen, Jun Zhou, Yong-Bin Chen, Ming Ma, You-Zhi Xu, Zhao-Shi Lan, Jin-Hao |
author_facet | Yu, Qian Liu, Ya-Li Sun, Guo-Zhong Liu, Yuan-Xia Chen, Jun Zhou, Yong-Bin Chen, Ming Ma, You-Zhi Xu, Zhao-Shi Lan, Jin-Hao |
author_sort | Yu, Qian |
collection | PubMed |
description | Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance. |
format | Online Article Text |
id | pubmed-8708795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87087952021-12-25 Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses Yu, Qian Liu, Ya-Li Sun, Guo-Zhong Liu, Yuan-Xia Chen, Jun Zhou, Yong-Bin Chen, Ming Ma, You-Zhi Xu, Zhao-Shi Lan, Jin-Hao Int J Mol Sci Article Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance. MDPI 2021-12-16 /pmc/articles/PMC8708795/ /pubmed/34948302 http://dx.doi.org/10.3390/ijms222413501 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Qian Liu, Ya-Li Sun, Guo-Zhong Liu, Yuan-Xia Chen, Jun Zhou, Yong-Bin Chen, Ming Ma, You-Zhi Xu, Zhao-Shi Lan, Jin-Hao Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title | Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title_full | Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title_fullStr | Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title_full_unstemmed | Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title_short | Genome-Wide Analysis of the Soybean Calmodulin-Binding Protein 60 Family and Identification of GmCBP60A-1 Responses to Drought and Salt Stresses |
title_sort | genome-wide analysis of the soybean calmodulin-binding protein 60 family and identification of gmcbp60a-1 responses to drought and salt stresses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708795/ https://www.ncbi.nlm.nih.gov/pubmed/34948302 http://dx.doi.org/10.3390/ijms222413501 |
work_keys_str_mv | AT yuqian genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT liuyali genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT sunguozhong genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT liuyuanxia genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT chenjun genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT zhouyongbin genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT chenming genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT mayouzhi genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT xuzhaoshi genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses AT lanjinhao genomewideanalysisofthesoybeancalmodulinbindingprotein60familyandidentificationofgmcbp60a1responsestodroughtandsaltstresses |