Cargando…
Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives
The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708846/ https://www.ncbi.nlm.nih.gov/pubmed/34947029 http://dx.doi.org/10.3390/jof7121047 |
_version_ | 1784622787650912256 |
---|---|
author | Baptista, Marlene Cunha, Joana T. Domingues, Lucília |
author_facet | Baptista, Marlene Cunha, Joana T. Domingues, Lucília |
author_sort | Baptista, Marlene |
collection | PubMed |
description | The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans’ inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries. |
format | Online Article Text |
id | pubmed-8708846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87088462021-12-25 Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives Baptista, Marlene Cunha, Joana T. Domingues, Lucília J Fungi (Basel) Article The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans’ inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries. MDPI 2021-12-07 /pmc/articles/PMC8708846/ /pubmed/34947029 http://dx.doi.org/10.3390/jof7121047 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baptista, Marlene Cunha, Joana T. Domingues, Lucília Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title_full | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title_fullStr | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title_full_unstemmed | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title_short | Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives |
title_sort | establishment of kluyveromyces marxianus as a microbial cell factory for lignocellulosic processes: production of high value furan derivatives |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708846/ https://www.ncbi.nlm.nih.gov/pubmed/34947029 http://dx.doi.org/10.3390/jof7121047 |
work_keys_str_mv | AT baptistamarlene establishmentofkluyveromycesmarxianusasamicrobialcellfactoryforlignocellulosicprocessesproductionofhighvaluefuranderivatives AT cunhajoanat establishmentofkluyveromycesmarxianusasamicrobialcellfactoryforlignocellulosicprocessesproductionofhighvaluefuranderivatives AT domingueslucilia establishmentofkluyveromycesmarxianusasamicrobialcellfactoryforlignocellulosicprocessesproductionofhighvaluefuranderivatives |