Cargando…
Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users
A network composed of unmanned aerial vehicles (UAVs), serving as base stations (UAV-BS network), is emerging as a promising component in next-generation communication systems. In the UAV-BS network, the optimal positioning of a UAV-BS is an essential requirement to establish line-of-sight (LoS) lin...
Autores principales: | Lee, Wonseok, Jeon, Young, Kim, Taejoon, Kim, Young-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708867/ https://www.ncbi.nlm.nih.gov/pubmed/34960332 http://dx.doi.org/10.3390/s21248239 |
Ejemplares similares
-
Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
por: Arranz, Raúl, et al.
Publicado: (2023) -
Proactive Handover Decision for UAVs with Deep Reinforcement Learning
por: Jang, Younghoon, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Joint Trajectory Planning, Transmission Scheduling, and Access Control in UAV-Assisted Wireless Sensor Networks
por: Luo, Xiaoling, et al.
Publicado: (2023) -
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
por: Xie, Jingyi, et al.
Publicado: (2020) -
Cooperative Search Method for Multiple UAVs Based on Deep Reinforcement Learning
por: Gao, Mingsheng, et al.
Publicado: (2022)