Cargando…
An Effective and Robust Approach Based on R-CNN+LSTM Model and NCAR Feature Selection for Ophthalmological Disease Detection from Fundus Images
Changes in and around anatomical structures such as blood vessels, optic disc, fovea, and macula can lead to ophthalmological diseases such as diabetic retinopathy, glaucoma, age-related macular degeneration (AMD), myopia, hypertension, and cataracts. If these diseases are not diagnosed early, they...
Autores principales: | Demir, Fatih, Taşcı, Burak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709012/ https://www.ncbi.nlm.nih.gov/pubmed/34945747 http://dx.doi.org/10.3390/jpm11121276 |
Ejemplares similares
-
Comparison of CNN Algorithms for Feature Extraction on Fundus Images to Detect Glaucoma
por: Sunanthini, V., et al.
Publicado: (2022) -
Development of R packages: ‘NonCompart’ and ‘ncar’ for noncompartmental analysis (NCA)
por: Kim, Hyungsub, et al.
Publicado: (2018) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
NLOS Identification in WLANs Using Deep LSTM with CNN Features
por: Nguyen, Viet-Hung, et al.
Publicado: (2018) -
Erratum: Development of R packages: ‘NonCompart’ and ‘ncar’ for noncompartmental analysis (NCA)
por: Kim, Hyungsub, et al.
Publicado: (2018)