Cargando…
Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings
The present study develops a deep learning method for predicting the boiling heat transfer coefficient (HTC) of nanoporous coated surfaces. Nanoporous coated surfaces have been used extensively over the years to improve the performance of the boiling process. Despite the large amount of experimental...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709019/ https://www.ncbi.nlm.nih.gov/pubmed/34947732 http://dx.doi.org/10.3390/nano11123383 |
_version_ | 1784622830596390912 |
---|---|
author | Sajjad, Uzair Hussain, Imtiyaz Imran, Muhammad Sultan, Muhammad Wang, Chi-Chuan Alsubaie, Abdullah Saad Mahmoud, Khaled H. |
author_facet | Sajjad, Uzair Hussain, Imtiyaz Imran, Muhammad Sultan, Muhammad Wang, Chi-Chuan Alsubaie, Abdullah Saad Mahmoud, Khaled H. |
author_sort | Sajjad, Uzair |
collection | PubMed |
description | The present study develops a deep learning method for predicting the boiling heat transfer coefficient (HTC) of nanoporous coated surfaces. Nanoporous coated surfaces have been used extensively over the years to improve the performance of the boiling process. Despite the large amount of experimental data on pool boiling of coated nanoporous surfaces, precise mathematical-empirical approaches have not been developed to estimate the HTC. The proposed method is able to cope with the complex nature of the boiling of nanoporous surfaces with different working fluids with completely different thermophysical properties. The proposed deep learning method is applicable to a wide variety of substrates and coating materials manufactured by various manufacturing processes. The analysis of the correlation matrix confirms that the pore diameter, the thermal conductivity of the substrate, the heat flow, and the thermophysical properties of the working fluids are the most important independent variable parameters estimation under consideration. Several deep neural networks are designed and evaluated to find the optimized model with respect to its prediction accuracy using experimental data (1042 points). The best model could assess the HTC with an R(2) = 0.998 and (mean absolute error) MAE% = 1.94. |
format | Online Article Text |
id | pubmed-8709019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87090192021-12-25 Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings Sajjad, Uzair Hussain, Imtiyaz Imran, Muhammad Sultan, Muhammad Wang, Chi-Chuan Alsubaie, Abdullah Saad Mahmoud, Khaled H. Nanomaterials (Basel) Article The present study develops a deep learning method for predicting the boiling heat transfer coefficient (HTC) of nanoporous coated surfaces. Nanoporous coated surfaces have been used extensively over the years to improve the performance of the boiling process. Despite the large amount of experimental data on pool boiling of coated nanoporous surfaces, precise mathematical-empirical approaches have not been developed to estimate the HTC. The proposed method is able to cope with the complex nature of the boiling of nanoporous surfaces with different working fluids with completely different thermophysical properties. The proposed deep learning method is applicable to a wide variety of substrates and coating materials manufactured by various manufacturing processes. The analysis of the correlation matrix confirms that the pore diameter, the thermal conductivity of the substrate, the heat flow, and the thermophysical properties of the working fluids are the most important independent variable parameters estimation under consideration. Several deep neural networks are designed and evaluated to find the optimized model with respect to its prediction accuracy using experimental data (1042 points). The best model could assess the HTC with an R(2) = 0.998 and (mean absolute error) MAE% = 1.94. MDPI 2021-12-13 /pmc/articles/PMC8709019/ /pubmed/34947732 http://dx.doi.org/10.3390/nano11123383 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sajjad, Uzair Hussain, Imtiyaz Imran, Muhammad Sultan, Muhammad Wang, Chi-Chuan Alsubaie, Abdullah Saad Mahmoud, Khaled H. Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title | Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title_full | Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title_fullStr | Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title_full_unstemmed | Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title_short | Boiling Heat Transfer Evaluation in Nanoporous Surface Coatings |
title_sort | boiling heat transfer evaluation in nanoporous surface coatings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709019/ https://www.ncbi.nlm.nih.gov/pubmed/34947732 http://dx.doi.org/10.3390/nano11123383 |
work_keys_str_mv | AT sajjaduzair boilingheattransferevaluationinnanoporoussurfacecoatings AT hussainimtiyaz boilingheattransferevaluationinnanoporoussurfacecoatings AT imranmuhammad boilingheattransferevaluationinnanoporoussurfacecoatings AT sultanmuhammad boilingheattransferevaluationinnanoporoussurfacecoatings AT wangchichuan boilingheattransferevaluationinnanoporoussurfacecoatings AT alsubaieabdullahsaad boilingheattransferevaluationinnanoporoussurfacecoatings AT mahmoudkhaledh boilingheattransferevaluationinnanoporoussurfacecoatings |